Serveur d'exploration sur la glutarédoxine

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Thymoquinone increases the expression of neuroprotective proteins while decreasing the expression of pro-inflammatory cytokines and the gene expression NFκB pathway signaling targets in LPS/IFNγ -activated BV-2 microglia cells.

Identifieur interne : 000201 ( Main/Exploration ); précédent : 000200; suivant : 000202

Thymoquinone increases the expression of neuroprotective proteins while decreasing the expression of pro-inflammatory cytokines and the gene expression NFκB pathway signaling targets in LPS/IFNγ -activated BV-2 microglia cells.

Auteurs : Makini K. Cobourne-Duval [États-Unis] ; Equar Taka [États-Unis] ; Patricia Mendonca [États-Unis] ; Karam F A. Soliman [États-Unis]

Source :

RBID : pubmed:29759145

Descripteurs français

English descriptors

Abstract

Neuroinflammation and microglial activation are pathological markers of a number of central nervous system (CNS) diseases. Chronic activation of microglia induces the release of excessive amounts of reactive oxygen species (ROS) and pro-inflammatory cytokines. Additionally, chronic microglial activation has been implicated in several neurodegenerative diseases, including Alzheimer's disease and Parkinson's disease. Thymoquinone (TQ) has been identified as one of the major active components of the natural product Nigella sativa seed oil. TQ has been shown to exhibit anti-inflammatory, anti-oxidative, and neuroprotective effects. In this study, lipopolysaccharide (LPS) and interferon gamma (IFNγ) activated BV-2 microglial cells were treated with TQ (12.5 μM for 24 h). We performed quantitative proteomic analysis using Orbitrap/Q-Exactive Proteomic LC-MS/MS (Liquid chromatography-mass spectrometry) to globally assess changes in protein expression between the treatment groups. Furthermore, we evaluated the ability of TQ to suppress the inflammatory response using ELISArray™ for Inflammatory Cytokines. We also assessed TQ's effect on the gene expression of NFκB signaling targets by profiling 84 key genes via real-time reverse transcription (RT2) PCR array. Our results indicated that TQ treatment of LPS/IFNγ-activated microglial cells significantly increased the expression of 4 antioxidant, neuroprotective proteins: glutaredoxin-3 (21 fold; p < 0.001), biliverdin reductase A (15 fold; p < 0.0001), 3-mercaptopyruvate sulfurtransferase (11 fold; p < 0.01), and mitochondrial lon protease (>8 fold; p < 0.001) compared to the untreated, activated cells. Furthermore, TQ treatment significantly (P < 0.0001) reduced the expression of inflammatory cytokines, IL-2 = 38%, IL-4 = 19%, IL-6 = 83%, IL-10 = 237%, and IL-17a = 29%, in the activated microglia compared to the untreated, activated which expression levels were significantly elevated compared to the control microglia: IL-2 = 127%, IL-4 = 151%, IL-6 = 670%, IL-10 = 133%, IL-17a = 127%. Upon assessing the gene expression of NFκB signaling targets, this study also demonstrated that TQ treatment of activated microglia resulted in >7 fold down-regulation of several NFκB signaling targets genes, including interleukin 6 (IL6), complement factor B (CFB), chemokine (CC motif) ligand 3 (CXCL3), chemokine (CC) motif ligand 5 (CCL5) compared to the untreated, activated microglia. This modulation in gene expression counteracts the >10-fold upregulation of these same genes observed in the activated microglia compared to the controls. Our results show that TQ treatment of LPS/IFNγ-activated BV-2 microglial cells induce a significant increase in expression of neuroprotective proteins, a significant decrease in expression inflammatory cytokines, and a decrease in the expression of signaling target genes of the NFκB pathway. Our findings are the first to show that TQ treatment increased the expression of these neuroprotective proteins (biliverdin reductase-A, 3-mercaptopyruvate sulfurtransferase, glutaredoxin-3, and mitochondrial lon protease) in the activated BV-2 microglial cells. Additionally, our results indicate that TQ treatment decreased the activation of the NFκB signaling pathway, which plays a key role in neuroinflammation. In conclusion, our results demonstrate that TQ treatment reduces the inflammatory response and modulates the expression of specific proteins and genes and hence potentially reduce neuroinflammation and neurodegeneration driven by microglial activation.

DOI: 10.1016/j.jneuroim.2018.04.018
PubMed: 29759145
PubMed Central: PMC5967628


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Thymoquinone increases the expression of neuroprotective proteins while decreasing the expression of pro-inflammatory cytokines and the gene expression NFκB pathway signaling targets in LPS/IFNγ -activated BV-2 microglia cells.</title>
<author>
<name sortKey="Cobourne Duval, Makini K" sort="Cobourne Duval, Makini K" uniqKey="Cobourne Duval M" first="Makini K" last="Cobourne-Duval">Makini K. Cobourne-Duval</name>
<affiliation wicri:level="2">
<nlm:affiliation>College of Pharmacy and Pharmaceutical Sciences, Florida A&M University, Tallahassee, FL 32307, United States.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>College of Pharmacy and Pharmaceutical Sciences, Florida A&M University, Tallahassee, FL 32307</wicri:regionArea>
<placeName>
<region type="state">Floride</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Taka, Equar" sort="Taka, Equar" uniqKey="Taka E" first="Equar" last="Taka">Equar Taka</name>
<affiliation wicri:level="2">
<nlm:affiliation>College of Pharmacy and Pharmaceutical Sciences, Florida A&M University, Tallahassee, FL 32307, United States.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>College of Pharmacy and Pharmaceutical Sciences, Florida A&M University, Tallahassee, FL 32307</wicri:regionArea>
<placeName>
<region type="state">Floride</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Mendonca, Patricia" sort="Mendonca, Patricia" uniqKey="Mendonca P" first="Patricia" last="Mendonca">Patricia Mendonca</name>
<affiliation wicri:level="2">
<nlm:affiliation>College of Pharmacy and Pharmaceutical Sciences, Florida A&M University, Tallahassee, FL 32307, United States.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>College of Pharmacy and Pharmaceutical Sciences, Florida A&M University, Tallahassee, FL 32307</wicri:regionArea>
<placeName>
<region type="state">Floride</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Soliman, Karam F A" sort="Soliman, Karam F A" uniqKey="Soliman K" first="Karam F A" last="Soliman">Karam F A. Soliman</name>
<affiliation wicri:level="2">
<nlm:affiliation>College of Pharmacy and Pharmaceutical Sciences, Florida A&M University, Tallahassee, FL 32307, United States. Electronic address: karam.soliman@famu.edu.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>College of Pharmacy and Pharmaceutical Sciences, Florida A&M University, Tallahassee, FL 32307</wicri:regionArea>
<placeName>
<region type="state">Floride</region>
</placeName>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2018">2018</date>
<idno type="RBID">pubmed:29759145</idno>
<idno type="pmid">29759145</idno>
<idno type="doi">10.1016/j.jneuroim.2018.04.018</idno>
<idno type="pmc">PMC5967628</idno>
<idno type="wicri:Area/Main/Corpus">000240</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000240</idno>
<idno type="wicri:Area/Main/Curation">000240</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000240</idno>
<idno type="wicri:Area/Main/Exploration">000240</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Thymoquinone increases the expression of neuroprotective proteins while decreasing the expression of pro-inflammatory cytokines and the gene expression NFκB pathway signaling targets in LPS/IFNγ -activated BV-2 microglia cells.</title>
<author>
<name sortKey="Cobourne Duval, Makini K" sort="Cobourne Duval, Makini K" uniqKey="Cobourne Duval M" first="Makini K" last="Cobourne-Duval">Makini K. Cobourne-Duval</name>
<affiliation wicri:level="2">
<nlm:affiliation>College of Pharmacy and Pharmaceutical Sciences, Florida A&M University, Tallahassee, FL 32307, United States.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>College of Pharmacy and Pharmaceutical Sciences, Florida A&M University, Tallahassee, FL 32307</wicri:regionArea>
<placeName>
<region type="state">Floride</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Taka, Equar" sort="Taka, Equar" uniqKey="Taka E" first="Equar" last="Taka">Equar Taka</name>
<affiliation wicri:level="2">
<nlm:affiliation>College of Pharmacy and Pharmaceutical Sciences, Florida A&M University, Tallahassee, FL 32307, United States.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>College of Pharmacy and Pharmaceutical Sciences, Florida A&M University, Tallahassee, FL 32307</wicri:regionArea>
<placeName>
<region type="state">Floride</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Mendonca, Patricia" sort="Mendonca, Patricia" uniqKey="Mendonca P" first="Patricia" last="Mendonca">Patricia Mendonca</name>
<affiliation wicri:level="2">
<nlm:affiliation>College of Pharmacy and Pharmaceutical Sciences, Florida A&M University, Tallahassee, FL 32307, United States.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>College of Pharmacy and Pharmaceutical Sciences, Florida A&M University, Tallahassee, FL 32307</wicri:regionArea>
<placeName>
<region type="state">Floride</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Soliman, Karam F A" sort="Soliman, Karam F A" uniqKey="Soliman K" first="Karam F A" last="Soliman">Karam F A. Soliman</name>
<affiliation wicri:level="2">
<nlm:affiliation>College of Pharmacy and Pharmaceutical Sciences, Florida A&M University, Tallahassee, FL 32307, United States. Electronic address: karam.soliman@famu.edu.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>College of Pharmacy and Pharmaceutical Sciences, Florida A&M University, Tallahassee, FL 32307</wicri:regionArea>
<placeName>
<region type="state">Floride</region>
</placeName>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Journal of neuroimmunology</title>
<idno type="eISSN">1872-8421</idno>
<imprint>
<date when="2018" type="published">2018</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Animals (MeSH)</term>
<term>Anti-Inflammatory Agents (pharmacology)</term>
<term>Benzoquinones (pharmacology)</term>
<term>Cell Line (MeSH)</term>
<term>Cytokines (biosynthesis)</term>
<term>Cytokines (drug effects)</term>
<term>Gene Expression (drug effects)</term>
<term>Inflammation (metabolism)</term>
<term>Interferon-gamma (pharmacology)</term>
<term>Lipopolysaccharides (pharmacology)</term>
<term>Mice (MeSH)</term>
<term>Microglia (drug effects)</term>
<term>Microglia (metabolism)</term>
<term>NF-kappa B (biosynthesis)</term>
<term>Neuroprotective Agents (pharmacology)</term>
<term>Signal Transduction (drug effects)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Animaux (MeSH)</term>
<term>Anti-inflammatoires (pharmacologie)</term>
<term>Benzoquinones (pharmacologie)</term>
<term>Cytokines (biosynthèse)</term>
<term>Cytokines (effets des médicaments et des substances chimiques)</term>
<term>Expression des gènes (effets des médicaments et des substances chimiques)</term>
<term>Facteur de transcription NF-kappa B (biosynthèse)</term>
<term>Inflammation (métabolisme)</term>
<term>Interféron gamma (pharmacologie)</term>
<term>Lignée cellulaire (MeSH)</term>
<term>Lipopolysaccharides (pharmacologie)</term>
<term>Microglie (effets des médicaments et des substances chimiques)</term>
<term>Microglie (métabolisme)</term>
<term>Neuroprotecteurs (pharmacologie)</term>
<term>Souris (MeSH)</term>
<term>Transduction du signal (effets des médicaments et des substances chimiques)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="biosynthesis" xml:lang="en">
<term>Cytokines</term>
<term>NF-kappa B</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="drug effects" xml:lang="en">
<term>Cytokines</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="pharmacology" xml:lang="en">
<term>Anti-Inflammatory Agents</term>
<term>Benzoquinones</term>
<term>Interferon-gamma</term>
<term>Lipopolysaccharides</term>
<term>Neuroprotective Agents</term>
</keywords>
<keywords scheme="MESH" qualifier="biosynthèse" xml:lang="fr">
<term>Cytokines</term>
<term>Facteur de transcription NF-kappa B</term>
</keywords>
<keywords scheme="MESH" qualifier="drug effects" xml:lang="en">
<term>Gene Expression</term>
<term>Microglia</term>
<term>Signal Transduction</term>
</keywords>
<keywords scheme="MESH" qualifier="effets des médicaments et des substances chimiques" xml:lang="fr">
<term>Cytokines</term>
<term>Expression des gènes</term>
<term>Microglie</term>
<term>Transduction du signal</term>
</keywords>
<keywords scheme="MESH" qualifier="metabolism" xml:lang="en">
<term>Inflammation</term>
<term>Microglia</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Inflammation</term>
<term>Microglie</term>
</keywords>
<keywords scheme="MESH" qualifier="pharmacologie" xml:lang="fr">
<term>Anti-inflammatoires</term>
<term>Benzoquinones</term>
<term>Interféron gamma</term>
<term>Lipopolysaccharides</term>
<term>Neuroprotecteurs</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Animals</term>
<term>Cell Line</term>
<term>Mice</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Animaux</term>
<term>Lignée cellulaire</term>
<term>Souris</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Neuroinflammation and microglial activation are pathological markers of a number of central nervous system (CNS) diseases. Chronic activation of microglia induces the release of excessive amounts of reactive oxygen species (ROS) and pro-inflammatory cytokines. Additionally, chronic microglial activation has been implicated in several neurodegenerative diseases, including Alzheimer's disease and Parkinson's disease. Thymoquinone (TQ) has been identified as one of the major active components of the natural product Nigella sativa seed oil. TQ has been shown to exhibit anti-inflammatory, anti-oxidative, and neuroprotective effects. In this study, lipopolysaccharide (LPS) and interferon gamma (IFNγ) activated BV-2 microglial cells were treated with TQ (12.5 μM for 24 h). We performed quantitative proteomic analysis using Orbitrap/Q-Exactive Proteomic LC-MS/MS (Liquid chromatography-mass spectrometry) to globally assess changes in protein expression between the treatment groups. Furthermore, we evaluated the ability of TQ to suppress the inflammatory response using ELISArray™ for Inflammatory Cytokines. We also assessed TQ's effect on the gene expression of NFκB signaling targets by profiling 84 key genes via real-time reverse transcription (RT
<sup>2</sup>
) PCR array. Our results indicated that TQ treatment of LPS/IFNγ-activated microglial cells significantly increased the expression of 4 antioxidant, neuroprotective proteins: glutaredoxin-3 (21 fold; p < 0.001), biliverdin reductase A (15 fold; p < 0.0001), 3-mercaptopyruvate sulfurtransferase (11 fold; p < 0.01), and mitochondrial lon protease (>8 fold; p < 0.001) compared to the untreated, activated cells. Furthermore, TQ treatment significantly (P < 0.0001) reduced the expression of inflammatory cytokines, IL-2 = 38%, IL-4 = 19%, IL-6 = 83%, IL-10 = 237%, and IL-17a = 29%, in the activated microglia compared to the untreated, activated which expression levels were significantly elevated compared to the control microglia: IL-2 = 127%, IL-4 = 151%, IL-6 = 670%, IL-10 = 133%, IL-17a = 127%. Upon assessing the gene expression of NFκB signaling targets, this study also demonstrated that TQ treatment of activated microglia resulted in >7 fold down-regulation of several NFκB signaling targets genes, including interleukin 6 (IL6), complement factor B (CFB), chemokine (CC motif) ligand 3 (CXCL3), chemokine (CC) motif ligand 5 (CCL5) compared to the untreated, activated microglia. This modulation in gene expression counteracts the >10-fold upregulation of these same genes observed in the activated microglia compared to the controls. Our results show that TQ treatment of LPS/IFNγ-activated BV-2 microglial cells induce a significant increase in expression of neuroprotective proteins, a significant decrease in expression inflammatory cytokines, and a decrease in the expression of signaling target genes of the NFκB pathway. Our findings are the first to show that TQ treatment increased the expression of these neuroprotective proteins (biliverdin reductase-A, 3-mercaptopyruvate sulfurtransferase, glutaredoxin-3, and mitochondrial lon protease) in the activated BV-2 microglial cells. Additionally, our results indicate that TQ treatment decreased the activation of the NFκB signaling pathway, which plays a key role in neuroinflammation. In conclusion, our results demonstrate that TQ treatment reduces the inflammatory response and modulates the expression of specific proteins and genes and hence potentially reduce neuroinflammation and neurodegeneration driven by microglial activation.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">29759145</PMID>
<DateCompleted>
<Year>2019</Year>
<Month>09</Month>
<Day>30</Day>
</DateCompleted>
<DateRevised>
<Year>2019</Year>
<Month>09</Month>
<Day>30</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1872-8421</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>320</Volume>
<PubDate>
<Year>2018</Year>
<Month>07</Month>
<Day>15</Day>
</PubDate>
</JournalIssue>
<Title>Journal of neuroimmunology</Title>
<ISOAbbreviation>J Neuroimmunol</ISOAbbreviation>
</Journal>
<ArticleTitle>Thymoquinone increases the expression of neuroprotective proteins while decreasing the expression of pro-inflammatory cytokines and the gene expression NFκB pathway signaling targets in LPS/IFNγ -activated BV-2 microglia cells.</ArticleTitle>
<Pagination>
<MedlinePgn>87-97</MedlinePgn>
</Pagination>
<ELocationID EIdType="pii" ValidYN="Y">S0165-5728(18)30076-6</ELocationID>
<ELocationID EIdType="doi" ValidYN="Y">10.1016/j.jneuroim.2018.04.018</ELocationID>
<Abstract>
<AbstractText>Neuroinflammation and microglial activation are pathological markers of a number of central nervous system (CNS) diseases. Chronic activation of microglia induces the release of excessive amounts of reactive oxygen species (ROS) and pro-inflammatory cytokines. Additionally, chronic microglial activation has been implicated in several neurodegenerative diseases, including Alzheimer's disease and Parkinson's disease. Thymoquinone (TQ) has been identified as one of the major active components of the natural product Nigella sativa seed oil. TQ has been shown to exhibit anti-inflammatory, anti-oxidative, and neuroprotective effects. In this study, lipopolysaccharide (LPS) and interferon gamma (IFNγ) activated BV-2 microglial cells were treated with TQ (12.5 μM for 24 h). We performed quantitative proteomic analysis using Orbitrap/Q-Exactive Proteomic LC-MS/MS (Liquid chromatography-mass spectrometry) to globally assess changes in protein expression between the treatment groups. Furthermore, we evaluated the ability of TQ to suppress the inflammatory response using ELISArray™ for Inflammatory Cytokines. We also assessed TQ's effect on the gene expression of NFκB signaling targets by profiling 84 key genes via real-time reverse transcription (RT
<sup>2</sup>
) PCR array. Our results indicated that TQ treatment of LPS/IFNγ-activated microglial cells significantly increased the expression of 4 antioxidant, neuroprotective proteins: glutaredoxin-3 (21 fold; p < 0.001), biliverdin reductase A (15 fold; p < 0.0001), 3-mercaptopyruvate sulfurtransferase (11 fold; p < 0.01), and mitochondrial lon protease (>8 fold; p < 0.001) compared to the untreated, activated cells. Furthermore, TQ treatment significantly (P < 0.0001) reduced the expression of inflammatory cytokines, IL-2 = 38%, IL-4 = 19%, IL-6 = 83%, IL-10 = 237%, and IL-17a = 29%, in the activated microglia compared to the untreated, activated which expression levels were significantly elevated compared to the control microglia: IL-2 = 127%, IL-4 = 151%, IL-6 = 670%, IL-10 = 133%, IL-17a = 127%. Upon assessing the gene expression of NFκB signaling targets, this study also demonstrated that TQ treatment of activated microglia resulted in >7 fold down-regulation of several NFκB signaling targets genes, including interleukin 6 (IL6), complement factor B (CFB), chemokine (CC motif) ligand 3 (CXCL3), chemokine (CC) motif ligand 5 (CCL5) compared to the untreated, activated microglia. This modulation in gene expression counteracts the >10-fold upregulation of these same genes observed in the activated microglia compared to the controls. Our results show that TQ treatment of LPS/IFNγ-activated BV-2 microglial cells induce a significant increase in expression of neuroprotective proteins, a significant decrease in expression inflammatory cytokines, and a decrease in the expression of signaling target genes of the NFκB pathway. Our findings are the first to show that TQ treatment increased the expression of these neuroprotective proteins (biliverdin reductase-A, 3-mercaptopyruvate sulfurtransferase, glutaredoxin-3, and mitochondrial lon protease) in the activated BV-2 microglial cells. Additionally, our results indicate that TQ treatment decreased the activation of the NFκB signaling pathway, which plays a key role in neuroinflammation. In conclusion, our results demonstrate that TQ treatment reduces the inflammatory response and modulates the expression of specific proteins and genes and hence potentially reduce neuroinflammation and neurodegeneration driven by microglial activation.</AbstractText>
<CopyrightInformation>Copyright © 2018 Elsevier B.V. All rights reserved.</CopyrightInformation>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Cobourne-Duval</LastName>
<ForeName>Makini K</ForeName>
<Initials>MK</Initials>
<AffiliationInfo>
<Affiliation>College of Pharmacy and Pharmaceutical Sciences, Florida A&M University, Tallahassee, FL 32307, United States.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Taka</LastName>
<ForeName>Equar</ForeName>
<Initials>E</Initials>
<AffiliationInfo>
<Affiliation>College of Pharmacy and Pharmaceutical Sciences, Florida A&M University, Tallahassee, FL 32307, United States.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Mendonca</LastName>
<ForeName>Patricia</ForeName>
<Initials>P</Initials>
<AffiliationInfo>
<Affiliation>College of Pharmacy and Pharmaceutical Sciences, Florida A&M University, Tallahassee, FL 32307, United States.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Soliman</LastName>
<ForeName>Karam F A</ForeName>
<Initials>KFA</Initials>
<AffiliationInfo>
<Affiliation>College of Pharmacy and Pharmaceutical Sciences, Florida A&M University, Tallahassee, FL 32307, United States. Electronic address: karam.soliman@famu.edu.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<GrantList CompleteYN="Y">
<Grant>
<GrantID>G12 MD007582</GrantID>
<Acronym>MD</Acronym>
<Agency>NIMHD NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>P20 MD006738</GrantID>
<Acronym>MD</Acronym>
<Agency>NIMHD NIH HHS</Agency>
<Country>United States</Country>
</Grant>
</GrantList>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D052061">Research Support, N.I.H., Extramural</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2018</Year>
<Month>05</Month>
<Day>04</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>Netherlands</Country>
<MedlineTA>J Neuroimmunol</MedlineTA>
<NlmUniqueID>8109498</NlmUniqueID>
<ISSNLinking>0165-5728</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D000893">Anti-Inflammatory Agents</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D016227">Benzoquinones</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D016207">Cytokines</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D008070">Lipopolysaccharides</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D016328">NF-kappa B</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D018696">Neuroprotective Agents</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>82115-62-6</RegistryNumber>
<NameOfSubstance UI="D007371">Interferon-gamma</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>O60IE26NUF</RegistryNumber>
<NameOfSubstance UI="C003466">thymoquinone</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000818" MajorTopicYN="N">Animals</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D000893" MajorTopicYN="N">Anti-Inflammatory Agents</DescriptorName>
<QualifierName UI="Q000494" MajorTopicYN="N">pharmacology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D016227" MajorTopicYN="N">Benzoquinones</DescriptorName>
<QualifierName UI="Q000494" MajorTopicYN="Y">pharmacology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D002460" MajorTopicYN="N">Cell Line</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D016207" MajorTopicYN="N">Cytokines</DescriptorName>
<QualifierName UI="Q000096" MajorTopicYN="N">biosynthesis</QualifierName>
<QualifierName UI="Q000187" MajorTopicYN="N">drug effects</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D015870" MajorTopicYN="N">Gene Expression</DescriptorName>
<QualifierName UI="Q000187" MajorTopicYN="Y">drug effects</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D007249" MajorTopicYN="N">Inflammation</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D007371" MajorTopicYN="N">Interferon-gamma</DescriptorName>
<QualifierName UI="Q000494" MajorTopicYN="N">pharmacology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008070" MajorTopicYN="N">Lipopolysaccharides</DescriptorName>
<QualifierName UI="Q000494" MajorTopicYN="N">pharmacology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D051379" MajorTopicYN="N">Mice</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017628" MajorTopicYN="N">Microglia</DescriptorName>
<QualifierName UI="Q000187" MajorTopicYN="Y">drug effects</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D016328" MajorTopicYN="N">NF-kappa B</DescriptorName>
<QualifierName UI="Q000096" MajorTopicYN="N">biosynthesis</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018696" MajorTopicYN="N">Neuroprotective Agents</DescriptorName>
<QualifierName UI="Q000494" MajorTopicYN="Y">pharmacology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D015398" MajorTopicYN="N">Signal Transduction</DescriptorName>
<QualifierName UI="Q000187" MajorTopicYN="N">drug effects</QualifierName>
</MeshHeading>
</MeshHeadingList>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="Y">Microglia</Keyword>
<Keyword MajorTopicYN="Y">NFκB</Keyword>
<Keyword MajorTopicYN="Y">Neuroinflammation</Keyword>
<Keyword MajorTopicYN="Y">Neuroprotection</Keyword>
<Keyword MajorTopicYN="Y">Thymoquinone</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2018</Year>
<Month>02</Month>
<Day>14</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="revised">
<Year>2018</Year>
<Month>04</Month>
<Day>17</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2018</Year>
<Month>04</Month>
<Day>30</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2018</Year>
<Month>5</Month>
<Day>16</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2018</Year>
<Month>5</Month>
<Day>16</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2019</Year>
<Month>10</Month>
<Day>1</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">29759145</ArticleId>
<ArticleId IdType="pii">S0165-5728(18)30076-6</ArticleId>
<ArticleId IdType="doi">10.1016/j.jneuroim.2018.04.018</ArticleId>
<ArticleId IdType="pmc">PMC5967628</ArticleId>
<ArticleId IdType="mid">NIHMS967514</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>FASEB J. 2004 Jul;18(10):1165-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15155563</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Free Radic Biol Med. 2002 Jun 1;32(11):1050-60</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12031889</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Neurosci. 2005 Apr 20;25(16):4082-90</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15843610</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Immunology. 2014 Jun;142(2):151-66</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24329535</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Free Radic Biol Med. 2006 Mar 15;40(6):960-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16540391</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Asian Pac J Trop Biomed. 2013 May;3(5):337-52</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23646296</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Environ Microbiol. 2010 Dec;76(23):7826-35</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20889785</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Antioxid Redox Signal. 2010 May 15;12(10):1147-54</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19769459</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Neurochem Res. 2008 Mar;33(3):579-88</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17929168</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Res. 2010 Jan;20(1):34-50</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20010915</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem Cell Biol. 2009 Jun;87(3):493-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19448742</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Mol Med. 2001 Dec;7(12):548-54</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11733217</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Int J Biochem Cell Biol. 2005 Feb;37(2):289-305</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15474976</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2002 Dec 10;99(25):16093-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12456881</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Alzheimers Dis. 2011;25(4):623-33</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21483094</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Int J Biochem Cell Biol. 2009 Jun;41(6):1284-95</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19038359</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2017 Jan 4;45(D1):D158-D169</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27899622</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2002 Aug 16;277(33):29584-92</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12048217</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Neurobiol Dis. 2003 Oct;14(1):133-45</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">13678674</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Tissue Res. 2011 Jan;343(1):227-35</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20838815</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Death Differ. 2004 Dec;11(12):1245-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15359293</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Immunol. 2008 Aug;29(8):357-65</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18599350</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Pharmacol Exp Ther. 2003 Jan;304(1):1-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12490568</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Neuropharmacology. 2015 Sep;96(Pt A):29-41</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25445485</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Food Chem Toxicol. 2015 Dec;86:72-80</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26342766</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nutr Cancer. 2010;62(7):938-46</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20924969</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Drug Chem Toxicol. 2003 May;26(2):87-98</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12816394</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Complement Altern Med. 2014 Aug 03;14 :282</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25088145</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Eur J Gastroenterol Hepatol. 2010 Jul;22(7):826-34</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20173644</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Int Urol Nephrol. 2016 May;48(5):701-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26837773</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Exp Toxicol Pathol. 2014 Jan;66(1):13-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23910425</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Neurosci Lett. 2014 Jun 6;570:126-31</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24080376</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Int J Alzheimers Dis. 2012;2012:983640</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22957298</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Antioxid Redox Signal. 2004 Oct;6(5):878-87</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15345148</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Neuroimmunol. 2001 Jul 2;117(1-2):87-96</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11431008</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Alzheimers Dis. 2010;22(4):1189-200</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20930302</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Neuroimmunol. 2015 Sep 15;286:5-12</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26298318</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Neurosci. 2005 Jun;8(6):752-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15895084</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Endocr Metab Immune Disord Drug Targets. 2006 Dec;6(4):359-72</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17214582</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Neurosci Res. 2009 Apr;63(4):280-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19367788</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochim Biophys Acta. 2014 Aug;1842(8):1240-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24189435</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Arch Med Res. 2008 Jan;39(1):1-16</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18067990</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Neurosci Res. 2005 Aug 1;81(3):302-13</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15954124</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Neurochem Int. 2005 Sep;47(4):298-307</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15955597</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2008 Jun 18;3(6):e2459</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18560520</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Int Immunopharmacol. 2017 Jul;48:17-29</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28458100</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Future Microbiol. 2017 Nov;12 :1397-1412</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29039220</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>CNS Neurol Disord Drug Targets. 2016;15(3):329-36</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26831258</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Clin Nutr Metab Care. 2015 Jan;18(1):89-95</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25405315</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Med Rep. 2016 Apr;13(4):3391-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26935478</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Neurochem Int. 2008 May;52(6):1188-97</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18289732</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Eur J Pharmacol. 2006 Aug 14;543(1-3):40-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16828080</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Immunol. 2009;27:119-45</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19302036</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Free Radic Biol Med. 2015 Aug;85:197-206</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25975981</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Neurodegener. 2009 Nov 16;4:47</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19917131</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Int Immunopharmacol. 2005 Dec;5(13-14):1749-70</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16275613</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Free Radic Biol Med. 2016 Nov;100:188-198</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27387767</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Free Radic Biol Med. 1995 Aug;19(2):197-207</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7649491</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Neuroimmunol. 2004 Feb;147(1-2):141-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14741447</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Neurobiol Aging. 2001 Nov-Dec;22(6):799-809</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11754986</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Pharmacol. 2012 Feb 10;3:14</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22363284</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Free Radic Biol Med. 2010 Mar 1;48(5):664-72</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20005291</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Exp Mol Med. 2011 Jan 31;43(1):15-23</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21099244</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell Biol. 2013 Mar;33(6):1104-13</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23297346</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cancer Ther. 2008 Jul;7(7):1789-96</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18644991</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Aging Cell. 2010 Apr;9(2):135-46</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20041858</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Adv Exp Med Biol. 2001;502:249-72</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11950143</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem Biophys Res Commun. 2013 Apr 19;433(4):362-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23537659</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell Biol. 1990 May;10(5):2327-34</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2183031</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2014 Aug 19;111(33):12157-62</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25097261</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cancer Ther. 2008;6(b):495-510</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19018291</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2005 May 27;308(5726):1314-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15831717</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Neuroimmunol. 1990 May;27(2-3):229-37</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2110186</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Neurol Sci. 2012 Nov 15;322(1-2):254-62</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22669122</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Toxicol. 2015;2015:841823</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26604923</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2015 Jan;43(Database issue):D36-42</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25355515</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Am J Pathol. 1994 Jul;145(1):42-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8030754</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Neuroinflammation. 2010 Apr 29;7:28</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20429874</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Antioxid Redox Signal. 2009 Apr;11(4):703-14</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18855522</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Neurosci Res. 2004 Aug 15;77(4):540-51</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15264224</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Neurobiol Aging. 2000 May-Jun;21(3):383-421</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10858586</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Int Immunopharmacol. 2002 Oct;2(11):1603-11</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12433061</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell Biochem. 2012 Oct;369(1-2):55-65</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22752387</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Chang Gung Med J. 2011 Mar-Apr;34(2):135-52</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21539755</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Neuroimmunol. 1999 Jan 1;93(1-2):139-48</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10378877</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Neurochem. 2004 Aug;90(3):765-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15255956</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Neurosci Lett. 2009 Jan 16;449(3):178-82</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19013215</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Cancer Drug Targets. 2014;14(3):294-309</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24605943</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Alzheimers Dis. 2014;40(3):519-29</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24496077</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>World Neurosurg. 2016 Feb;86:243-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26428323</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Cell Neurosci. 2014 Nov 07;8:380</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25426028</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Phytother Res. 2007 Sep;21(9):898-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17582594</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2016 Jul 15;291(29):15267-81</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27226559</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Aging Neurosci. 2015 Jul 20;7:124</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26257642</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Toxicol Lett. 2003 Jul 20;143(2):133-43</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12749817</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Free Radic Biol Med. 2013 Sep;62:90-101</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23200807</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Antioxid Redox Signal. 2006 Nov-Dec;8(11-12):1975-86</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17034343</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Br J Biomed Sci. 2013;70(2):75-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23888609</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Phytother Res. 2009 May;23(5):696-700</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19089849</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biomed Sci Instrum. 2005;41:388-93</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15850137</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>CNS Neurosci Ther. 2014 Jul;20(7):591-602</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24703487</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Clin Invest. 2001 Jan;107(1):7-11</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11134171</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Brain Res Brain Res Rev. 1999 Aug;30(2):153-63</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10525172</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Free Radic Biol Med. 2008 Sep 1;45(5):726-31</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18554520</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Neuroinflammation. 2006 Nov 09;3:30</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17094809</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Transl Neurodegener. 2013 Oct 12;2(1):21</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24119446</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochim Biophys Acta. 1999 Feb 9;1410(2):215-28</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10076028</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Chem Biol Interact. 2012 Apr 15;197(1):40-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22450443</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Neurosci. 1999;22:219-40</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10202538</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Biosci (Landmark Ed). 2009 Jan 01;14 :376-97</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19273073</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Neuroinflammation. 2004 Jul 30;1(1):14</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15285801</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Sultan Qaboos Univ Med J. 2015 Aug;15(3):e305-16</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26357550</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Free Radic Biol Med. 2013 Sep;62:13-25</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23665395</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Redox Biol. 2013 Feb 09;1:258-64</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24024159</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Prog Neurobiol. 2012 May;97(2):54-66</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21827820</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Neurosci. 2003 Apr 1;23(7):2665-74</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12684452</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Neurosci. 1996 Aug;19(8):312-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8843599</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biomed Pharmacother. 2004 Jan;58(1):39-46</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14739060</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Antioxid Redox Signal. 2011 Jul 15;15(2):343-52</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21050138</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Rev Neurosci. 2007 Jan;8(1):57-69</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17180163</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Gerontol A Biol Sci Med Sci. 2004 May;59(5):478-93</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15123759</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Neurobiol. 2009 Oct;40(2):139-56</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19629762</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Brain. 2009 Feb;132(Pt 2):288-95</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18567623</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FASEB J. 2004 Jul;18(10):1102-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15132975</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Antioxid Redox Signal. 2012 Mar 15;16(6):543-66</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22066468</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Neurobiol Dis. 2014 Feb;62:144-59</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24095978</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Prog Neurobiol. 2005 Jun;76(2):77-98</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16081203</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Brain Res. 1999 Dec 11;850(1-2):1-13</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10629743</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Immunopharmacol Immunotoxicol. 2012 Dec;34(6):881-95</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22970774</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Ann N Y Acad Sci. 1996 Jan 17;777:205-12</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8624085</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Neurochem Res. 2016 Dec;41(12 ):3227-3238</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27585756</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 1996 Sep;112(1):249-258</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12226388</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Biochem Funct. 2002 Jun;20(2):143-51</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11979510</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 1987 Feb 27;235(4792):1043-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">3029864</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Leukoc Biol. 2000 Jan;67(1):18-25</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10647993</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Ann Transl Med. 2015 Jun;3(10):136</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26207229</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Free Radic Biol Med. 2009 Apr 15;46(8):1042-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19439239</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>EXCLI J. 2014 Feb 13;13:98-110</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26417245</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Neurosci. 2007 Nov;10(11):1387-94</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17965659</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Neurobiol Aging. 2010 Jan;31(1):8-16</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18440671</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioimpacts. 2014;4(2):75-81</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25035850</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Antioxid Redox Signal. 2010 Jan;12(1):1-13</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19852698</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Behav Brain Res. 1996 Jun;78(1):37-41</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8793035</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Glia. 2010 Jan 1;58(1):103-13</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19544392</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1999 Mar 2;96(5):2445-50</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10051662</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cancer Res. 2008 Jun;6(6):1059-70</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18567808</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Antioxid Redox Signal. 2004 Feb;6(1):63-74</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14713336</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Free Radic Res Commun. 1992;17(4):221-37</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1473734</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Neurol Neurosurg Spine. 2016;1(1):</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28127589</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Oxid Med Cell Longev. 2016;2016:5698931</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26881031</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochim Biophys Acta. 2007 Apr;1770(4):556-64</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17292554</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>États-Unis</li>
</country>
<region>
<li>Floride</li>
</region>
</list>
<tree>
<country name="États-Unis">
<region name="Floride">
<name sortKey="Cobourne Duval, Makini K" sort="Cobourne Duval, Makini K" uniqKey="Cobourne Duval M" first="Makini K" last="Cobourne-Duval">Makini K. Cobourne-Duval</name>
</region>
<name sortKey="Mendonca, Patricia" sort="Mendonca, Patricia" uniqKey="Mendonca P" first="Patricia" last="Mendonca">Patricia Mendonca</name>
<name sortKey="Soliman, Karam F A" sort="Soliman, Karam F A" uniqKey="Soliman K" first="Karam F A" last="Soliman">Karam F A. Soliman</name>
<name sortKey="Taka, Equar" sort="Taka, Equar" uniqKey="Taka E" first="Equar" last="Taka">Equar Taka</name>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/GlutaredoxinV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000201 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000201 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    GlutaredoxinV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:29759145
   |texte=   Thymoquinone increases the expression of neuroprotective proteins while decreasing the expression of pro-inflammatory cytokines and the gene expression NFκB pathway signaling targets in LPS/IFNγ -activated BV-2 microglia cells.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:29759145" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a GlutaredoxinV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 15:13:42 2020. Site generation: Wed Nov 18 15:16:12 2020